To Pickle or Not To Pickle

John Grocki Corrosion Solutions Sept 2009

Two Reasons To Pickle

Post Weld Cleaning

• Weld zone heat tint

- <u>Remove Surface</u>
 <u>Contamination</u>
- Rust Bloom or Embedded Rust

- Not Spatter
- Not Slag

- Not Markings
- Not Scratches

Weld Defects

Heavy Heat Tint

Corrosion in Heat Tint Area

Repaired Weld Spatter

Un removed Slag

Identification Marking

Surface Scratch (with imbedded iron)

Things to Consider Before Pickling

• Alloy Selected

<u>Corrosion</u>
 <u>Environment</u>

- Austenitic SS
- Duplex SS
- Safety Margin Required

- Localized corrosion
- General Corrosion

What is Heat Tint

- SS have a thin passive layer on their surface
- With exposure to O2 at high temperature (400 – 1300F) a thin "straw tinted" Cr2O3 layer forms

• As a result a Cr depleted layer forms beneath the heat tint

What is Heat Tint

- With additional exposure and additional O2 pickup the Cr2O3 layer becomes unstable
- A more volatile CrO3 "dark blue/black"layer is formed
- There is an increase in Fe content at the surface

What is Heat Tint

Corrosive Environment Effect

• <u>Localized</u> <u>Corrosion</u> <u>General</u>
 <u>Corrosion</u>

- Can break through heat tint and attack Cr depleted zone
- May break through heat tint and dissolve Cr depleted zone restoring base corrosion resistance

Heat Tint Color Level Reference

- The FORCE Institute, Denmark Reference Color Charts – report 94.54
- "Corrosion failures in stainless steel pipe systems", J.Vagn Hansen, The FORCE Institute, Denmark and Rene Gronmark, Weld Tech, Denmark, Tube International, May 1977

Fig. 3 Using a Reference Colour Chart, it is possible to specify an acceptable heat tint on and adjacent to TIG welds on stainless steel piping. This permits visual inspection as well as video endoscopy. Courtesy of FORCE Institute.

Alloy Selected

• Austenitic SS

- May be resistant to localized attack under thin "straw colored" heat tint
- General corrosion environment should remove heat tint with no further attack

• <u>Duplex SS</u>

- Less resistant to localized attack even under thin "straw colored" heat tint
- General corrosion environment should remove heat tint with no further attack

What is Surface Rust

- Contamination of the surface by particles of carbon steel
- Rust bloom is usually fine particles lightly adhering to the surface (usually can be removed with a pencil eraser)
- Embedded rust is larger particles of carbon steel which have been driven into the stainless steels surface

Corrosive Environment Effect

- <u>Localized</u> <u>Corrosion</u>
- Will attack the pit created by an embedded particle

- <u>General Corrosion</u>
- Could attack the area around an embedded particle more aggressively than the base material

Alloy Selected

• <u>Austenitic SS</u>

• <u>Duplex SS</u>

- Will be susceptible to localized attack under embedded particles
- General corrosion environment should remove rust bloom with no further attack
- Will be susceptible to localized attack under embedded particles
- General corrosion environment should remove rust bloom with no further attack

Cost Implications Pickling cost as a % of fabricated Tank Cost

Diam/ Height	20'	(gals)	50'	(gals)
10'	6.5 / 7.5	23500	7.5 / 8.2	150000
20'	7.7 / 8.3	47000	6.9 / 8.2	300000
30'	8.4 / 8.8	71000	6.9 / 7.9	450000
40'	8.1 / 8.1	95000	6.4 / 7.4	600000
50'	8.3 / 9.8	118000	5.9 / 7.1	735000

Cost Implications

Pickling cost \$ vs.Fabricated Tank cost \$

Diam/ Height	20'	20'	50'	50'
	Pickle K\$	Pickle K\$	Pickle K\$	Pickle K\$
	Total K\$ 304/316	Total K\$ 2304/2205	Total K\$ 304/316	Total K\$ 2304/2205
10'	4	5	16	19
	60 / 63	66 / 68	206 / 222	223 / 238
20'	6	7	18	23
	76 / 80	83 / 86	250 / 269	270 / 288
30'	8	9	21	26
	92 / 97	100 / 105	293 / 317	317 / 338
40'	9	12	23	28
	108 / 114	117 / 123	340 / 368	363 / 388
50'	11	14	25	31
	128 / 136	139 / 146	404 / 437	422 / 450

So "What to Do"

Evaluate Condition •Heat Tint •Surface Contamination	Evaluate Corrosion •Localized •General	Understand Alloy Selection •Duplex SS •Austenitic SS
Evaluate Safety Margin •Pushed to the limit •Over alloyed	Determine Pickling Needed •Weld Areas •Larger surface Areas	Weigh Cost Implications •Cost of pickle and disposal •Cost of premature failure

Recommendations for Heat Tint

 Localized Corrosion Environment Pickle for all alloy/tint combinations

General Corrosion Environment
 Pickle dark blue/black heat tints
 Consider leaving light "straw" colored heat tints

Recommendations for Surface Rust

- Embedded Rust Particles
 Pickle for all alloy/environment combinations
- Surface Rust Bloom

Make sure it is lightly adherent (eraser method) If it is leave it for all alloy/environment combinations

Test Medium: 10 % FeCL3 6H20 Basic Material Weld Heat-affected Zone

Surface Conditions

- A original conditions (oxide coating, welding scale)
- B pickled with liquid
 pickle (HNO₃ + HF)
- E pickled with Antox 71 E (Metasco)

Test Medium: 10 % FeCl₃ 6H₂0 Basic Material Weld

Heat-affected Zone

Surface Conditions

ground C (disk coarseness 60)

blasted with F glass beads

pickled with Antox 71 E E (Metasco)

Test Medium: 10 % FeCl₃ ^{6H}2⁰

Weld

Heat-affected Zone

Surface Conditions

C ground (disk coarseness 60)

D ground and pickled with Antox 71 E (Metasco)

E pickled with Antox 71 E (Metasco)

Test Medium: 10 % FeCL3 6H20 Basic Material

Weld

.....

Heat-affected Zone

Surface Conditions

- F blasted with glass beads
- E pickled with Antox 71 E (Metasco)
- G blasted and pickled with Antox 71 E (Metasco)

IN SUMMARY

